

Contents

Preface xix
List of Symbols xxiii

1

VECTORS

1.1	Vector Algebra Examples	2 3, 5		
1.2	odern Change Detropo	9692 19		
1.3	The Time Deriva	tive	8	
1.4	The Gradient Example	10		
1.5	Flux and Diverge	nce. Th	ne Diver	
1.6	Line Integral and Examples	Curl 16, 19	16	
1.7	Stokes's Theorem Example	21		
1.8	The Laplacian	22		

	3
Curvilinear Coordinates 23 1.9 Curvilinear Coordinates 24 1.9.1 Cylindrical Coordinates 26 1.9.2 Spherical Coordinates 26 1.9.3 The Gradient 27 1.9.4 The Divergence 28 1.9.5 The Curl 30 1.9.5 The Curl 30	
1.9.5 The Laplacian 1.9.6 The Laplacian 1.10 Summary 32 Problems 36	
2	
ELECTROSTATIC FIELDS I 40 Electrostatic Fields in a Vacuum	
2.1 Coulomb's Law 40 Example 41	
2.2 The Electric Field Intensity 42 2.3 The Electric Potential 43 2.4 The Electric Field Inside and Outside Macroscopic Bodies 46 2.5 Gauss's Law 47 47	0
Example: The Average Potential over a Spherical Surface 2.6 The Equations of Poisson and of Laplace Solution Spherical Surface 4 2.7 Conductors 52	,
Example 53 2.8 Calculation of the Electric Field Produced by a Simple C Distribution 53	harge
Example: Field of a Uniform Spherical Charge Distribution 2.9 The Electric Dipole 61	54
2.10 The Linear Electric Quadrupole 64 2.11 Electric Multipoles 65	
2.12 The Electric Field Outside an Arbitrary Charge Distribution 2.13 The Average Electric Field Intensity Inside a Sphere Containing an Arbitrary Charge Distribution 70	66
2.14 Potential Energy of a Charge Distribution 72 2.15 Energy Density in an Electric Field 76 Example 78	
2.16 Forces on Conductors 78 Example 80	
Example: Forces on a Parallel-Plate Capacitor 80 2.17 Summary 81 Problems 84	

CONTENT

3

EL

ECTROSTATIC FIELDS II 91					
Dielectric Materials					
3.1 The Electric Polarization P 92					
3.2 Electric Field at an Exterior Point 92					
3.2.1 The Bound Charge Densities ρ_b and σ_b 94					
3.2.2 The Polarization Current Density 96					
3.3 Electric Field at an Interior Point 97					
3.3.1 Electric Field Intensity E" due to the Distant Dipoles 98					
3.3.2 Electric Field Intensity E'' due to the Near Dipoles 100 Review 101					
3.4 The Local Field 102					
3.5 The Electric Susceptibility χ_e 104					
3.6 The Divergence of E. The Electric Displacement D 105					
3.6.1 The Relative Permittivity er. Poisson's Equation					
for Dielectrics 108					
3.6.2 The Free Charge Density ρ_f and the Bound					
Charge Density ρ_b 108					
3.7 Calculation of Electric Fields Involving Dielectrics 109 Example: The Dielectric-Insulated Parallel-Plate Capacitor 110					
Example: The Free Charge Density σ_f , the Bound Charge Density					
σ _b , and the Electric Displacement D at a					
Dielectric-Conductor Boundary 111					
Example: Dielectric Sphere with a Point Charge at its Center 111					
Example: The Bar Electret 113					
3.8 The Clausius-Mossotti Equation 115					
3.9 Polar Dielectrics 116					
3.9.1 The Langevin Equation 117					
3.9.2 The Debye Equation 120					
3.10 Frequency Dependence, Anisotropy, and Nonhomogeneity 121					
Examples 122					
3.11 Potential Energy of a Charge Distribution in the Presence					
of Dielectrics 123					
Example: Energy Stored in a Parallel-Plate Capacitor 124					
3.12 Forces on Dielectrics 125					
Example: Force per Unit Volume on the Insulating Material					
in a Coaxial Cable 127					
3.13 Forces on Conductors in the Presence of Dielectrics. Energy Density					
in Dielectrics 128					
Example: Forces on a Parallel-Plate Capacitor Immersed in a Liquid Dielectric 128					
3.14 Summary 129					

131

Problems

Solution of Laplace's Equation in Spherical Coordinates. Legendre's Continuity of V, D_n , E_t at the Interface Between Two Different 168 Field Between Two Grounded Semi-infinite Parallel Field Between Two Grounded Parallel Electrodes 140 Example: Conducting Sphere in a Uniform Electric Field Charged Sphere Near a Grounded Conducting Solution of Laplace's Equation in Rectangular Coordinates General Methods for Solving Laplace's and Poisson's Equations Terminated on Two Opposite Sides by Plates Dielectric Sphere in a Uniform Electric Field 139 Electrodes Terminated by a Plane Electrode Point Charge Near a Grounded Conducting Point Charge Near a Charged Conducting Tangential Component of the Electric Field Intensity Point Charge Near an Infinite Grounded Charge Near a Semi-infinite Dielectric Normal Component of the Electric Displacement 191 Example: p-n Junction Diode in Silicon 138 163 144 at Potentials V₁ and V₂ 158 Solution of Poisson's Equation for V 141 Solution of Poisson's Equation for E Conducting Plane 142 Equation. Legendre Polynomials ELECTROSTATIC FIELDS III 4.1.4 Bending of Lines of Force at Potential V. 150 The Uniqueness Theorem Sphere Sphere Plane 181 183 Example: Examples Example: Example: Example: Example: Example: Example: Example: 4.1.1 Potential Summary Problems Images 4.6 4.7 4.4 4.5 4.8

Breakdown of the Galilean Transformation and of Classical Mechanics at High Velocities 195

The Galilean Transformation

The Basic Concepts

RELATIVITY I

	Example: Particle Velocities Never Exceed c 195 Example: The Addition of Velocities 195
	Example: Time Dilation 195
5.3	Inadequacy of the Galilean Transformation for Electromagnetic Phenomena 196
	Example: The Trouton and Noble Experiment 196
	Example: Magnetic Fields 197
	Example: The Jaseva-Javan-Murray-Townes Experiment 198
5.4	The Fundamental Postulate of Relativity 201
5.5	Invariance of a Physical Law as Illustrated by Classical
	Mechanics 201
	Example: Classical Mechanics Inside a Moving Train 202
	Example: The Law $F = ma$ 202
5.6	The Lorentz Transformation 203
5.7	Transformation of a Length 205
5.1	E I E A MA AL EVALUATION TOTAL OF A C
- 0	
5.8	Transformation of a Time Interval 209
	Example: The Time Read on a Rapidly Moving Clock 210
	Example: The Relativistic Doppler Effect for Electromagnetic Waves 212
ROS	Example V, and day or to the English
5.9	Simultaneity 213
5.10	
5.11	Transformation of a Velocity 215
	Examples 216, 217
5.12	Transformation of an Acceleration 217
5.13	Relativistic Mass 217
5.14	Transformation of a Mass 220
5.15	Relativistic Energy & 220
	Example 221
5.16	The Four-Vector r 221
5.17	Transformation of a Momentum and of a Relativistic Energy.
	The Four-Momentum 223
	Example: The Relation $\mathcal{E}^2 = m_0 c^4 + p^2 c^2$ 224
5.18	Transformation of a Force 225
3.10	Examples 226
5 10	Transformation of an Element of Volume 226
	Invariance of Electric Charge 228
3.20	Example 229
e 21	
	Transformation of an Electric Charge Density and of an Electric
	Current. The Four-current Density 229
	Examples 231
5.22	The Four-Dimensional Operator 232
5.23	The Conservation of Charge 233
	Summary 234
	Problems 239

The Electric and Magnetic Fields of Moving Electric Charges 247 RELATIVITY II

Force Exerted on a Moving Charge by Another Charge Moving

at the Same Constant Velocity U 6.1

Field of a Charge Moving at a Constant Velocity 6.2

6.2.2 The Magnetic Field 259 256 The Electric Field

Example: The Field of a 10 GeV Electron 260 at $\theta = 90^{\circ}$ Transformation of Electric and Magnetic Fields The Parallel-Plate Capacitor Example:

264 The Vector Potential 4 6.4

Example: The Vector Potential for a 10-GeV Electron

at $\theta = 90^{\circ}$ 266

The Scalar Potential V. The Electric Field Intensity E Expressed in Terms of V and A 266 266 in Terms of V and A

Example: V, VV, and 3A/3r for a 10-GeV Electron

Transformation of the Electromagnetic Potentials V and A. The Four-Potential A 9.9

Example: The Parallel-Plate Capacitor 271 The Lorentz Condition 6.7

Example 272 Gauss's Law

273 The Divergence of B

273 The Curl of E 6.10

274 The Curl of B 6.11

Maxwell's Equations 6.12

276

Example: The Magnetic Field Near a Straight Wire Carrying a Steady Electric Current Example:

The Magnetic Field of a Short Element of Wire Carrying an Electric Current Example:

Force on a Moving Charged Particle Force on a Second Element I di Example:

Problems Summary

286

Steady Currents and Nonmagnetic Materials MAGNETIC FIELDS

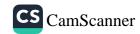
293 Magnetic Forces 7.1

The Magnetic Induction B. The Biot-Savart Law

Example: The Magnetic Induction Due to a Current Flowing
in a Long Straight Wire 296 Example: Force Between Two Long Parallel Wires 297 Example: The Circular Loop 299
7.3 The Force on a Point Charge Moving in a Magnetic Field 299
Example: Hall Effect in Semiconductors 300 Example: The Hodoscope 301
 7.4 The Divergence of the Magnetic Induction B 302 7.5 The Vector Potential A 303
Example: The Long Straight Wire 305 Example: Pair of Long Parallel Wires 306
7.5.1 The Line Integral of the Vector Potential A Over a Closed Curve 308
7.6 The Curl of the Magnetic Induction B 308 7.7 Ampère's Circuital Law 310
Example: Long Cylindrical Conductor 311 Example: The Toroidal Coil 313
Example: The Long Solenoid 315
Example: Refraction of the Lines of B at a Current Sheet 316 Example: The Short Solenoid 317
7.8 The Magnetic Dipole 319 Example: The Long Solenoid 322
7.9 Summary 322
Problems 323
Lampie: Force Lewcon Two Coarial Solenoids 363
Emple Magnetic Torque on a Control Loop Me 8
DC II 222
Induced Electromotance and Magnetic Energy
8.1 The Faraday Induction Law 332 Example: The Expanding Loop 335
8.1.1 The Faraday Induction Law in Differential Form 336 8.2 The Induced Electric Field Intensity E in Terms of the Vector
Potential A Example: The Electromotance Induced in a Loop by a Pair of Long Parallel Wires Carrying a Variable Current 338
8.3 Induced Electromotance in a Moving System 339 Example: The Electromotance Induced in a Fixed Loop in a Time-dependent Magnetic Field 342 Example: The Electromotance Induced in a Loop Rotating in a Fixed Magnetic Field 342
Floatromotance 343
8.4 Inductance and Induced Electromotatice 8.4.1 Mutual Inductance 343 8.4.2 Self-inductance 345

	Example: Self-inductance of a Long Solenoid 346 Example: Self-inductance of a Toroidal Coil 347 Self-inductance of a Toroidal Coil 347 Mutual Inductance Between Two Coaxial Solenoids 348
	8.4.3 Coefficient of Coupling 350
8.5	Energy Stored in a Magnetic Field
	Example 352 8.5.1 Magnetic Energy in Terms of the Magnetic Induction B Example 354 8.5.2 Magnetic Energy in Terms of the Current Density J _I 8.5.2 Magnetic Energy in Terms of the Current Density J _I
	and of the Vector Potential
	8.5.3 Magnetic Energy in Terms of the Current and of the Magnetic Flux Φ 355
	8.5.4 Magnetic Energy in Terms of the Currents and of the Inductances 355 Examples 356
8.6	Self-inductance for a Volume Distribution of Current Example: Self-inductance of a Coaxial Line 356
8.7	Magnetic Force Between Two Circuits 358
	8.7.1 The Magnetic Force When the Currents are Kept Constant Example: Force Between Two Coaxial Solenoids 361
	8.7.2 Magnetic Force When the Fluxes Are Kept Constant Example: Force Between Two Coaxial Solenoids 363
8.8	Magnetic Torque 364 Example: Magnetic Torque on a Current Loop 365
8.9	Magnetic Forces Within an Isolated Circuit 366 Example: The Pinch Effect 366
8.10	Magnetic Pressure 367 Example: Magnetic Pressure Inside a Long Solenoid 369
	Summary 370 Problems 373
9	Parallel Wires Carrying a Verlanded until
	TIC FIELDS III 383
9.2	The Magnetization M 384 Magnetic Induction B at an Exterior Point 384 Magnetic Induction B at an Interior Point. The Divergence of B Example: The B Field of a Uniformly Magnetized Cylinder

393 395


9.4	The Magnetic Field Intensity H. Ampère's Circuital Law						
9.5	Magnetic Susceptibility χ_m and Relative Permeability μ_r						
	9.5.1 The Equivalent Current Density $\nabla \times M$ and the Free Current Density J_I 396						
9.6	Hysteresis 396						
	9.6.1 Energy Dissipated in a Hysteresis Cycle 398 Example 400						
9.7	Boundary Conditions 400						
9.8	Magnetic Field Calculations 402						
	Example: The B and H Fields of a Bar Magnet 402 Example: The Bar Magnet and the Bar Electret 404						
	9.8.1 Magnetic Circuits 405						
	9.8.1.1 Magnetic Circuit With an Air Gap 407 Example 409						
	9.8.1.2 Magnetic Circuit Energized by a Permanent Magnet 409						
	Example 411						
	9.8.2 Solution of Poisson's Equation for B 413 Example: The Magnetic Induction at the Center						
	Example: The Magnetic Induction at the Center of a Rotating Disk of Charge 413						
9.9	Summary 414						
	Problems 417						
10							
MAXW	ELL'S EQUATIONS 422						
MAXW 10.1	ELL'S EQUATIONS 422 The Conservation of Electric Charge 422 Example: Charge Density in a Conductor 424						
MAXW 10.1	ELL'S EQUATIONS 422 The Conservation of Electric Charge 422 Example: Charge Density in a Conductor 424						
MAXW 10.1	ELL'S EQUATIONS 422 The Conservation of Electric Charge 422 Example: Charge Density in a Conductor 424 The Potentials V and A 424						
MAXW 10.1 10.2	ELL'S EQUATIONS 422 The Conservation of Electric Charge 422 Example: Charge Density in a Conductor 424 The Potentials V and A 424 10.2.1 The Retarded Potentials 427 Example: The Retarded Potentials for an Oscillating						
MAXW 10.1 10.2	The Conservation of Electric Charge 422 Example: Charge Density in a Conductor 424 The Potentials V and A 424 10.2.1 The Retarded Potentials 427 Example: The Retarded Potentials for an Oscillating Electric Dipole 427 Example: The Retarded Potential A for an Oscillating						
MAXW 10.1 10.2	The Conservation of Electric Charge 422 Example: Charge Density in a Conductor 424 The Potentials V and A 424 10.2.1 The Retarded Potentials 427 Example: The Retarded Potentials for an Oscillating Electric Dipole 427 Example: The Retarded Potential A for an Oscillating Magnetic Dipole 428						
MAXW 10.1 10.2	The Conservation of Electric Charge 422 Example: Charge Density in a Conductor 424 The Potentials V and A 424 10.2.1 The Retarded Potentials 427 Example: The Retarded Potentials for an Oscillating Electric Dipole 427 Example: The Retarded Potential A for an Oscillating Magnetic Dipole 428						
MAXW 10.1 10.2	The Conservation of Electric Charge 422 Example: Charge Density in a Conductor 424 The Potentials V and A 424 10.2.1 The Retarded Potentials 427 Example: The Retarded Potentials for an Oscillating Electric Dipole 427 Example: The Retarded Potential A for an Oscillating Magnetic Dipole 428 The Lorentz Condition 432 Example: The Leaky Spherical Capacitor 434						
MAXW 10.1 10.2	The Conservation of Electric Charge 422 Example: Charge Density in a Conductor 424 The Potentials V and A 424 10.2.1 The Retarded Potentials 427 Example: The Retarded Potentials for an Oscillating Electric Dipole 427 Example: The Retarded Potential A for an Oscillating Magnetic Dipole 428 The Lorentz Condition 432 Example: The Leaky Spherical Capacitor 434 The Divergence of E and the Nonhomogeneous Wave						
10.1 10.2 10.3 10.4	The Conservation of Electric Charge 422 Example: Charge Density in a Conductor 424 The Potentials V and A 424 10.2.1 The Retarded Potentials 427 Example: The Retarded Potentials for an Oscillating Electric Dipole 427 Example: The Retarded Potential A for an Oscillating Magnetic Dipole 428 The Lorentz Condition 432 Example: The Leaky Spherical Capacitor 434 The Divergence of E and the Nonhomogeneous Wave						
10.1 10.2 10.3 10.4	The Conservation of Electric Charge 422 Example: Charge Density in a Conductor 424 The Potentials V and A 424 10.2.1 The Retarded Potentials 427 Example: The Retarded Potentials for an Oscillating Electric Dipole 427 Example: The Retarded Potential A for an Oscillating Magnetic Dipole 428 The Lorentz Condition 432 Example: The Leaky Spherical Capacitor 434 The Divergence of E and the Nonhomogeneous Wave Equation for V 436 The Nonhomogeneous Wave Equation for A 437						
10.1 10.2 10.3 10.4	The Conservation of Electric Charge 422 Example: Charge Density in a Conductor 424 The Potentials V and A 424 10.2.1 The Retarded Potentials 427 Example: The Retarded Potentials for an Oscillating Electric Dipole 427 Example: The Retarded Potential A for an Oscillating Magnetic Dipole 428 The Lorentz Condition 432 Example: The Leaky Spherical Capacitor 434 The Divergence of E and the Nonhomogeneous Wave Equation for V 436 The Nonhomogeneous Wave Equation for 1 437 The Curl of B 437 The Displacement Current Density						
10.1 10.2 10.3 10.4 10.5 10.6	The Conservation of Electric Charge 422 Example: Charge Density in a Conductor 424 The Potentials V and A 424 10.2.1 The Retarded Potentials 427 Example: The Retarded Potentials for an Oscillating Electric Dipole 427 Example: The Retarded Potential A for an Oscillating Magnetic Dipole 428 The Lorentz Condition 432 Example: The Leaky Spherical Capacitor 434 The Divergence of E and the Nonhomogeneous Wave Equation for V 436 The Nonhomogeneous Wave Equation for 1 437 The Curl of B 437 Example: The Displacement Current Density in a Conductor 439						
10.1 10.2 10.3 10.4 10.5 10.6	The Conservation of Electric Charge 422 Example: Charge Density in a Conductor 424 The Potentials V and A 424 10.2.1 The Retarded Potentials 427 Example: The Retarded Potentials for an Oscillating Electric Dipole 427 Example: The Retarded Potential A for an Oscillating Magnetic Dipole 428 The Lorentz Condition 432 Example: The Leaky Spherical Capacitor 434 The Divergence of E and the Nonhomogeneous Wave Equation for V 436 The Nonhomogeneous Wave Equation for 1 437 The Curl of B 437 The Displacement Current Density						

10.8	Duality 444 Examples 446
10.9	Lorentz's Lemma 446 Examples 445, 446
10.10 10.11	The Nonhomogeneous Wave Equations for E and B
	A Magnetic Field Calculations unt
11	
ELECT	GATION OF ROMAGNETIC WAVES I 459
Plane	Waves in Infinite Media
11.1	Plane Electromagnetic Waves in Free Space 460
	11.1.1 The Poynting Vector 464 Examples 465
	Example: Energy Flow Through an Imaginary Cylinder 465
11.2	The E and H Vectors in Homogeneous, Isotropic, Linear, and Stationary Media 467
11.3	Propagation of Plane Electromagnetic Waves in Nonconductors 470 Example 471
11.4	Propagation of Plane Electromagnetic Waves in Conducting Media 471
	11.4.1 The Poynting Vector in Conducting Media 473
, 11.5	Propagation of Plane Electromagnetic Waves in Good Conductors 475
	Example: Propagation in Copper at 1 Megahertz 479 Example: Joule Losses in Good Conductors 480
11.6	Propagation of Plane Electromagnetic Waves in Low-pressure Ionized Gases 481 Example 483
	11.6.1 The Conductivity σ of an Ionized Gas 483 Example 485
	11.6.2 The Plasma Angular Frequency ω_p 486 11.6.3 Wave Propagation at High Frequencies where $\omega > \omega_p$ 489 11.6.4 Wave Propagation at Low Frequencies where $\omega < \omega_p$ 491 Examples 492 Example: The Ionosphere 492
11.7	Summary 493
	Problems 495

PDODA(CATION OF
	GATION OF
	ROMAGNETIC WAVES II 504
Reflec	tion and Refraction
12.1	The Laws of Reflection and Snell's Law of Refraction 505
12.2	Fresnel's Equations 508
	12.2.1 Incident Wave Polarized with its E Vector Normal to the Plane of Incidence 508
	12.2.2 Incident Wave Polarized with its E Vector Parallel
	to the Plane of Incidence 510
12.3	Reflection and Refraction at the Interface Between Two Nonmagnetic
	Nonconductors 511
	12.3.1 The Brewster Angle 515 Example: Measuring the Relative Permittivity of the Moon's
	Surface at Radio Frequencies 517
	12.3.2 The Coefficients of Reflection and of Transmission at an Interface
	Between Two Nonconductors 517
12.4	
	Example: Light Emission from a Cathode Ray Tube 525 Example: The Critical Angle and Brewster's Angle 526
	Example. The Citical Pingle and District
	12.4.1 Demonstration of the Validity of Snell's Law, of the Laws of Reflection and Refraction, and of Fresnel's Equations
	in the Case of Total Reflection 527
	12.4.1.1 The Wave Numbers k_{1x} and k_{1z} for the Reflected
	Wave 528 12.4.1.2 The Wave Numbers k_{2x} and k_{2x} for the
	Transmitted Wave 528
	12.4.1.3 The Amplitudes of E and H in the Reflected and
	Transmitted Waves 529
	12.4.1.4 The royaling vector for the Transmitter
12.5	Reflection and Refraction at the Surface of a Good Conductor Example: Communicating with Submarines at Sea 535
	Example: Standing Waves at Normal Incidence 535
	Example: Transmission of an Electromagnetic Wave Through a
	Thin Sheet of Copper at Normal Incidence 536
	12.5.1 Demonstration of the Validity of Snell's Law, of the Laws of Reflection
	and Refraction, and of Fresnel's Equations at the Interface Between a Nonconductor and a Good Conductor 540
	12.5.1.1 The Wave Numbers k_{2x} and k_{2x} for
	Refraction in a Good Conductor 541
	12.5.1.2 The Amplitudes of E and H in the Reflected and
	Transmitted Waves 542
12.6	Radiation Pressure at Normal Incidence on a Good Conductor Examples 546 543
127	Examples 546 Reflection of an Electromagnetic Wave by an Ionized Gas 547
12.7 12.8	Summary 549
12.0	Problems 551

£	9
E S	
E	
0	
0	

ME	ides	59		603	419	625
	PROPAGATION OF ELECTROMAGNETIC WAVES III 557 ELECTROMAGNETIC WAVES III 557 13.1 Propagation in a Straight Line 557 13.1.1 TE and TM Waves 560 13.1.2 TEM Waves 561 13.1.3 Boundary Conditions at the Surface of Metallic Wave Guides 13.2 The Coaxial Line 566 13.3 The Hollow Rectangular Wave Guide 568 13.3.1 The TE Wave 569 13.3.2 Internal Reflections 575 13.3.3 Energy Transmission 577 13.3.4 Attenuation 578 13.4.5 Summary 582 Problems 585	14 RADIATION OF ELECTROMAGNETIC WAVES	14.1 Electric Dipole Radiation 595 14.1.1 The Scalar Potential V 597 14.1.2 The Vector Potential A and the Magnetic Field Intensity H 598 14.1.3 The Electric Field Intensity E 601		14.2.1 The Electric Field Intensity E 611 14.2.2 The Magnetic Field Intensity H 614 14.2.3 The Average Poynting Vector and the Radiated Power 14.3 Antenna Arrays 616 14.4 Electric Quadrupole Radiation 620 14.5 Magnetic Dipole Radiation 423 14.5.1 The Potentials V and A 424 14.5.2 The F and W.V. and A 424	14.5.3 The Average Pointing Vector and the Radiated Power 14.6 Magnetic Quadrupole Radiation 426 14.7 The Electric and Magnetic Dipoles as Receiving Antennas 14.8 The Reciprocity Theorem 629 14.9 Summary 633 Problems 635

APPENDIXES 641

A. Conversion Table 643

8 The Complex Potential 644

B.1 Functions of the Complex Variable 644

B.2 Conformal Transformations

The Function W(z) as a Complex Potential 647

Example: 648

B.4 The Stream Function 649

Example: The Parallel-plate Capacitor

Example: The Cylindrical Capacitor 651

Example: Field of Two Parallel Line Charges of Opposite

Polarities 653

Example: Field of Two Parallel Conducting Circular Cylinders

of Opposite Polarities 654

Problems 656

0 Induced Electromotance in Moving Systems 657

Example: Experiment 1 657

Example: Experiment 2 662 660

Example: Experiment 3

D. The Exponential Notation 665

D.1

The jw Operator

665

Example: Solving a Linear Differential Equation with Constant Coefficients, Using the Exponential Notation

Waves

E.1 Plane Sinusoidal Waves 670

E.2 Waves on a Stretched String. The Differential Equation for an Unattenuated Wave

E.3 Solution of the Differential Equation for an Unattenuated Wave by the Separation of Variables 676

E.4 Reflection of a Wave on a Stretched String at a Point Where the Density Changes from ρ_1 to ρ_2

E.5 Waves on a Stretched String with Damping The Differential Equation for an Attenuated Wave

E.6 by the Separation of Variables Solution of the Differential Equation for an Attenuated Wave

E.7 Wave Propagation in Three Dimensions 682

E.8 Wave Propagation of a Vector Quantity 683

E.9 The Nonhomogeneous Wave Equation 683

ANSWERS 685

INDEX

699

Preface

This is a revised version of Introduction to Electromagnetic Fields and Waves by the same authors. The general level is unchanged, despite the fact that the phrase "Introduction to" has been omitted in the title.

Like the first edition, this book is intended primarily for students who have had at least one full course in electricity and magnetism, and one full course in calculus, including an introduction to differential equations. It should also be useful for scientists and engineers who wish to review the subject.

The major change has been the addition of two chapters on relativity. Those who are pressed for time may omit these without losing continuity. The other chapters have been largely rewritten, with many additions and deletions. There are about 100 new figures; as in the first edition, three-dimensional objects and phenomena are represented as such, and the field maps (such as those in Chapter 4) have been plotted on a computer. Most of the 140 examples and most of the 413 problems are new.

The aim of this book is to give the reader a working knowledge of the basic concepts of electromagnetism. Indeed, as Alfred North Whitehead stated, half a century ago, "Education is the acquisition of the art of the utilization of knowledge." This explains the relatively large number of examples and problems. It also explains why we have covered fewer subjects more thoroughly. For instance, Laplace's equation is solved in rectangular and in spherical coordinates, but not in cylindrical coordinates.

CONTENTS

So as to reduce the mathematical requirements, we have included a chapter on vectors (Chapter 1), a discussion of Legendre's differential equation

