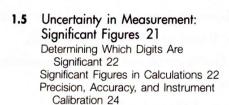

PRINCIPLES OF GENERAL CHEMISTRY

CHAPTER

Keys to the Study of Chemistry 1


- 1.1 Some Fundamental Definitions 2

 The Properties of Matter 2

 The Three States of Matter 3

 The Central Theme in Chemistry 5

 The Importance of Energy in the Study of Matter 5
- 1.2 The Scientific Approach: Developing a Model 7
- 1.3 Chemical Problem Solving 9 Units and Conversion Factors in Calculations 9 A Systematic Approach to Solving Chemistry Problems 11
- 1.4 Measurement in Scientific Study 13 General Features of SI Units 13 Some Important SI Units in Chemistry 14

For Review and Reference 25

Problems 27

2 CHAPTER

The Components of Matter 31

- 2.1 Elements, Compounds, and Mixtures: An Atomic Overview 32
- 2.2 The Observations That Led to an Atomic View of Matter 34
 Mass Conservation 34
 Definite Composition 34
 Multiple Proportions 35
- 2.3 Dalton's Atomic Theory 36
 Postulates of the Atomic Theory 36
 How the Theory Explains the Mass Laws 37
- 2.4 The Observations That Led to the Nuclear Atom Model 37 Discovery of the Electron and Its Properties 37 Discovery of the Atomic Nucleus 39
- 2.5 The Atomic Theory Today 41
 Structure of the Atom 41
 Atomic Number, Mass Number, and Atomic Symbol 42
 Isotopes and Atomic Masses of the Elements 42

- 2.6 Elements: A First Look at the Periodic Table 45
- 2.7 Compounds: Introduction to Bonding 47
 The Formation of Ionic Compounds 48
 The Formation of Covalent Compounds 50
- 2.8 Compounds: Formulas, Names, and Masses 51
 Types of Chemical Formulas 51
 Names and Formulas of Ionic Compounds 52
 Names and Formulas of Binary Covalent Compounds 57
 Naming Alkanes 58
 Mediacular Masses from Chemical Formulas 58
 adducing Molecules 60
- Consilication of Mixtures 60 Ser Review and Reference 62 Problems 63

3 CHAPTER

Stoichiometry of Formulas and Equations 69

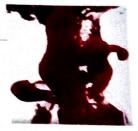
- 3.1 The Mole 70
 Defining the Mole 70
 Molar Mass 72
 Interconverting Moles, Mass, and Number of Chemical Entities 73
 Mass Percent from the Chemical Formula 75
- Determining the Formula of an Unknown Compound 77
 Empirical Formulas 77
 Molecular Formulas 78
- 3.3 Writing and Balancing Chemical Equations 82
- 3.4 Calculating Amounts of Reactant and Product 87 Stoichiometrically Equivalent Molar Ratios from the Balanced Equation 87 Chemical Reactions That Involve a Limiting Reactant 90 Chemical Reactions in Practice: Theoretical, Actual, and Percent Yields 93

3.5 Fundamentals of Solution Stoichiometry 95
Expressing Concentration in Terms of Molarity 95
Mole-Mass Number Conversions Involving
Solutions 96

Dilution of Motar Solutions 96 Stoichiometry of Chemical Reactions in Solution 96 For Review and Reference 100 Problems 102

4 CHAPTER

The Major Classes of Chemical Reactions 108


- 4.1 The Role of Water as a Solvent 109
 The Polar Nature of Water 109
 Jonic Compounds in Water 109
 Covelent Compounds in Water 112
- 4.2 Writing Equations for Aqueous Ionic Reactions 113
- 4.3 Precipitation Reactions 115
 The Key Event: Formation of a Solid from
 Dissolved Ions 115
 Predicting Whether a Precipitate Will Form 116
- 4.4 Acid-Base Reactions 117
 The Key Event: Formation of H₀O from H⁺ and OH⁻ 118
 Acid-Base Titrations 119
 Proton Transfer: A Obser Look at Acid-Base
 Beactions 121

4.5 Oxidation-Reduction (Redox) Reactions 123

The Key Event: Movement of Electrons Between Reactants 123 Some Essential Redox Terminology 124 Using Oxidation Numbers to Monitor the Movement of Electron Charge 124

4.6 Elements in Redox Reactions 126
Combining Two Elements 127
Combining Compound and Element 127
Decomposing Compounds into Elements 127
Displacing One Element by Another; Activity Series 128
Combustion Reactions 130

For Review and Reference 131 Problems 132

5 CHAPTER

Gases and the Kinetic-Molecular Theory 138

- 5.1 An Overview of the Physical States of Matter 139
- 5.2 Gas Pressure and Its Measurement 140 Measuring Atmospheric Pressure 141 Units of Pressure 141
- 5.3 The Gas Laws and Their Experimental Foundations 143

The Relationship Between Volume and Pressure: Boyle's Law 143 The Relationship Between Volume and Temperature: Charles's Law 144 The Relationship Between Volume and Amount: Avogadro's Law 146 Gas Behavior at Standard Conditions 147

The Ideal Gas Law 148 Solving Gas Law Problems 149

- 5.4 Further Applications of the Ideal Gas Law 152 The Density of a Gas 153 The Molar Mass of a Gas 154 The Partial Pressure of a Gas in a Mixture of Gases 155
- 5.5 The Ideal Gas Law and Reaction Stoichiometry 158
- 5.6 The Kinetic-Molecular Theory: A Model for Gas Behavior 160 How the Kinetic-Molecular Theory Explains the Gas Laws 160 Effusion and Diffusion 164
- 5.7 Real Gases: Deviations from Ideal Behavior 165 Effects of Extreme Conditions on Gas Behavior 166 The van der Waals Equation: The Ideal Gas Law Redesigned 168 For Review and Reference 168 Problems 170

6 CHAPTER

Thermochemistry: Energy Flow and Chemical Change 177

- 6.1 Forms of Energy and Their Interconversion 178
 The System and Its Surroundings 178
 Energy Flow to and from a System 178
 Heat and Work: Two Forms of Energy Transfer 179
 The Law of Energy Conservation 181
 Units of Energy 182
 State Functions and the Path Independence of the Energy Change 183
- 6.2 Enthalpy: Heats of Reaction and Chemical Change 184
 The Meaning of Enthalpy 185
 Exothermic and Endothermic Processes 185
- 6.3 Calorimetry: Laboratory Measurement of Heats of Reaction 187 Specific Heat Capacity 187 The Practice of Calorimetry 188

- 6.4 Stoichiometry of Thermochemical Equations 191
- 6.5 Hess's Law of Heat Summation 192
- 6.6 Standard Heats of Reaction (ΔH°_{rxn}) 194 Formation Equations and Their Standard Enthalpy Changes 194

Determining $\Delta H^{\circ}_{\rm ixn}$ from $\Delta H^{\circ}_{\rm f}$ Values of Reactants and Products 195

Fossil Fuels and Climate Change 197

For Review and Reference 198 Problems 200

19 CHAPTER

Ionic Equilibria in Aqueous Systems 615

19.1 Equilibria of Acid-Base Buffer Systems 616
How a Buffer Works: The Common-Ion Effect 617
The Henderson-Hasselbalch Equation 621
Buffer Capacity and Buffer Range 621
Preparing a Buffer 623

19.2 Acid-Base Titration Curves 624 Monitoring pH with Acid-Base Indicators 624 Strong Acid-Strong Base Titration Curves 626 Weak Acid-Strong Base Titration Curves 629 Weak Base-Strong Acid Titration Curves 631

19.3 Equilibria of Slightly Soluble Ionic Compounds 632 The Ion-Product Expression (Q_{sp}) and the Solubility-Product Constant (K_{sp}) 632 Calculations Involving the Solubility-Product Constant 634 The Effect of a Common Ion on Solubility 636

The Effect of pH on Solubility 637

Predicting the Formation of a Precipitate: $Q_{\rm sp}$ vs. $K_{\rm sp}$ 638

Applying Ionic Equilibria to the Acid-Rain Problem 639

19.4 Equilibria Involving Complex lons 641
Formation of Complex lons 641
Complex lons and the Solubility of Precipitates 643

For Review and Reference 644 Problems 646

Thermodynamics: Entropy, Free Energy, and the Direction of Chemical Reactions 650

20.1 The Second Law of Thermodynamics: Predicting Spontaneous Change 651 Limitations of the First Law of Thermodynamics 651 The Sign of ΔH Cannot Predict Spontaneous Change 652 Freedom of Particle Motion and Dispersal of Particle Energy 653 Entropy and the Number of Microstates 653 Entropy and the Second Law of Thermodynamics 656 Standard Molar Entropies and the Third Law 657

20.2 Calculating the Change in Entropy of a Reaction 661 Entropy Changes in the System: Standard Entropy of Reaction (ΔS^{*}_{con}) 661

Entropy Changes in the Surroundings: The Other Part of the Total 662

of the Total 662
The Entropy Change and the Equilibrium State 664
Spontaneous Exothermic and Endothermic Reactions:
A Summary 665

20.3 Entropy, Free Energy, and Work 666
Free Energy Change and Reaction Spontaneity 666
Calculating Standard Free Energy Changes 667
ΔG and the Work a System Can Do 668
The Effect of Temperature on Reaction Spontaneity 669
Coupling of Reactions to Drive a Nonspontaneous Change 671

20.4 Free Energy, Equilibrium, and Reaction Direction 672

For Review and Reference 676 Problems 677

21 CHAPTER

Electrochemistry: Chemical Change and Electrical Work 681

21.1 Redox Reactions and Electrochemical Cells 682
A Quick Review of Oxidation-Reduction Concepts 682
Half-Reaction Method for Balancing Redox Reactions 683
An Overview of Electrochemical Cells 686

21.2 Voltaic Cells: Using Spontaneous Reactions to Generate Electrical Energy 687

Construction and Operation of a Voltaic Cell 688 Notation for a Voltaic Cell 690

1.3 Cell Potential: Output of a Voltaic Cell 692 Standard Cell Potentials 692

Relative Strengths of Oxidizing and Reducing Agents 695

4 Free Energy and Electrical Work 700

Standard Cell Potential and the Equilibrium Constant 700
The Effect of Concentration on Cell Potential 703
Changes in Potential During Cell Operation 704
Concentration Cells 705

21.5 Electrochamical Processes in Batteries 708
Primary (Nonrechargeable) Batteries 709
Secondary (Fedhargeable) Batteries 710
Fuel Cells 7:1

21.6 Corresions A.F. ase of Environmental Electrochemistry 713
The Corresion of Iron 713
Protecting Against the Corresion of Iron 714

21.7 Electrolytic Cells: Using Electrical Energy to Drive Nonspontaneous Reactions 715

Construction and Operation of an Electrolytic Cell 716
Predicting the Products of Electrolysis 717
Industrial Electrochemistry: Purifying Copper and Isolating

Aluminum 721
The Stoichiometry of Electrolysis: The Relation Between Amounts of

Charge and Product 724
For Review and Reference 726

For Review and Reference 726 Problems 728

22 CHAPTER

The Transition Elements and Their Coordination Compounds 734

- 22.1 Properties of the Transition Elements 735 Electron Configurations of the Transition Metals and Their lons 736 Atomic and Physical Properties of the Transition Elements 737 Chemical Properties of the Transition Metals 739
- 22.2 Coordination Compounds 741 Complex Ions: Coordination Numbers, Geometries, and Ligands 742 Formulas and Names of Coordination Compounds 743 Isomerism in Coordination Compounds 745

22.3 Theoretical Basis for the Bonding and Properties of Complexes 748 Application of Valence Bond Theory to Complex lons 748 Crystal Field Theory 750 Transition Metal Complexes in Biological Systems 756

For Review and Reference 758 Problems 759

CHAPTER

Nuclear Reactions and Their Applications 762

- 23.1 Radioactive Decay and Nuclear Stability 763 The Components of the Nucleus: Terms and Notation 763 Types of Radioactive Emissions and Decay; Balancing Nuclear Equations 764 Nuclear Stability and the Mode of Decay 767
- 23.2 The Kinetics of Radioactive Decay 770 The Rate of Radioactive Decay 770 Radioisotopic Dating 773
- 24.3 Nuclear Transmutation: Induced Changes in Nuclei 774
- 23.4 The Effects of Nuclear Radiation on Matter 776 The Effects of Radioactive Emissions: Excitation and Effects of Ionizing Radiation on Living Matter 777

- 23.5 Applications of Radioisotopes 779 Radioactive Tracers: Applications of Nonionizing Radiation 779 Applications of Ionizing Radiation 780
- 23.6 The Interconversion of Mass and Energy 781 The Mass Defect 782 Nuclear Binding Energy 783
- 23.7 Applications of Fission and Fusion 785 The Process of Nuclear Fission 785 The Promise of Nuclear Fusion 788

For Review and Reference 788 Problems 790

Appendix A Common Mathematical Operations in Chemistry A-1

Manipulating Logarithms A-1 Using Exponential (Scientific) Notation A-2 Solving Quadratic Equations A-3 Graphing Data in the Form of a Straight Line A-4 Appendix B Standard Thermodynamic Values for Selected

Substances at 298 K A-5

Appendix C Equilibrium Constants at 298 K A-8 Dissociation (Ionization) Constants (Ka) of Selected Addiss a Dissociation (Ionization) Constants (Kb) of Selectors expired

Dissociation (Ionization) Constants (Ka) of Some Hydrates Michal lons A-12

Formation Constants (K₁) of Some Complex Ions A-12 Solubility Product Constants (K_{sp}) of Slightly Soluble Ionic Compounds A-13

Appendix D Standard Electrode (Half-Cell) Potentials at 298 K A-14

Appendix E Answers to Selected Problems A-15 Glossary G-1

Credits C-1

Index I-1