

Brief contents

List of abbreviations xxiii

Part 1: Introduction to the chemical reactions of the cell

Chapter 1: Chemistry, energy, and metabolism 1

Part 2: Structure of proteins and membranes

Chapter 2: The structure of proteins 23

Chapter 3: The cell membrane—a structure depending only on weak forces 39

Part 3: Metabolism

Chapter 4: Digestion and absorption of food 61

Chapter 5: Preliminary outline of fuel distribution and utilization by the different tissues of the body 73

Chapter 6: Biochemical mechanisms involved in food transport, storage, and mobilization 79

Chapter 7: Energy production from foodstuffs—a preliminary overview 95

Chapter 8: Glycolysis, the citric acid cycle, and the electron transport system: reactions involved in these pathways 107

Chapter 9: Energy production from fat 131

Chapter 10: A switch from catabolic to anabolic metabolismfirst the synthesis of fat and related compounds in the body 139

Chapter 11: Synthesis of glucose in the body (gluconeogenesis) 151

Chapter 12: Strategies for metabolic control and their application to carbohydrate and fat metabolism 159

Chapter 13: Why should there be an alternative pathway of glucose oxidation?—the pentose phosphate pathway 181

Chapter 14: Raising electrons of water back up the energy scale-photosynthesis 187

Chapter 15: Amino acid metabolism 197

Chapter 16: Garbage disposal units inside cells 209

Chapter 17: Enzymic protective mechanisms in the bod

Chapter 18: Nucleotide metabolism 223

Part 4: Information storage and utilization

Chapter 19: DNA—its structure and arrangement in

Chapter 20: DNA synthesis and repair 251

Chapter 21: Gene transcription—the first step in the r by which genes direct protein synthesis 271

Chapter 22: Protein synthesis, intracellular transpor degradation 293

Chapter 23: Viruses and viroids 315

Chapter 24: Gene cloning, recombinant DNA technology genetic engineering 325

Chapter 25: The immune system 337

Chapter 26: Chemical signalling in the body 349

Part 5: Transport of oxygen and

Chapter 27: The red blood cell and the role of he

Part 6: Mechanical work by ce

Chapter 28: Muscle contraction 389

Chapter 29: The role of the cytoskeleton in shap of cells and in mechanical work in cells 397

Answers to problems 405

Figure acknowledgements 423

Index 425

Contents

List of abbreviations xxiii

Part 1: Introduction to the chemical reactions of the cell

Chapter 1: Chemistry, energy, and metabolism 1

What determines whether a chemical reaction is possible? 1 Reversible and irreversible reactions and ΔG values 2 The importance of irreversible reactions in the strategy of metabolism 3

Why is this metabolic strategy used in the cell? 3

How are ΔG values obtained? 3

Standard free energy values and equilibrium constants 4 Given that a reaction has a negative ΔG value, what determines whether it actually takes place at a perceptible rate in the cell? 4

The nature of enzyme catalysis 4 How does an enzyme work? 5

How is food breakdown in cells coupled to supply energyrequiring reactions in the cell? 7

The high-energy phosphate compound 8

What is a 'high-energy phosphate compound'? 9

What are the structural features of high-energy phosphate compounds? 9

What transports the -P around the cell? 11

How does ATP perform chemical work? 12

How does ATP drive other types of work? 12

A note on the relationship between AMP, ADP, and ATP 13

Weak bonds and free-energy changes 13

What causes weak bond formation and breakage? 14 If weak bonds are so easily broken, what is their advantage in biochemical systems? 15

Appendix: Buffers and pK_a values 15

Further reading 17

Problems 17

Part 2: Structure of proteins and membranes

Chapter 2: The structure of proteins 23

The primary structure of proteins 23

What is a native protein? 24

What are the basic considerations that determine the dimensional structure of a protein? 24

Structures of 20 amino acids 25

The hydrophilic amino acids 26

Amino acids for special purposes 26

Ionization of amino acids 26

The different levels of protein structure—primary, secondary, tertiary, and quaternary 27

Secondary structure of proteins 27

The a helix 28

The β-pleated sheet 29

Random coil or loop regions of the polypeptide chain 29

Tertiary structure of proteins 29

How are proteins made up of the three motifs—the a heli

 β -pleated sheet, and the random coil? 29

What forces hold the tertiary structure in position? 30

Where do the disulfide or S-S covalent bonds come into

structure? 30

Quaternary structure of proteins 32

Membrane proteins 32

Conjugated proteins 32

What are protein modules or domains? 33 Why should domains be of interest? 33

The proteins of hair and connective tissue 34

The α -keratins of hair, wool, horn, and hooves 34

The structure of collagens 34

The structure of elastin 36

The mystery of protein folding 36

Further reading 36

Problems 37

RIV CONTENTS

Chapter 3: The cell membrane—a structure depending only

on weak forces 39 Why are cell membranes needed? 39

What are the polar lipid constituents of cell membranes? 40 The lipid bilayer 40 What are the polar groups attached to the phosphatidic acid? 42 A note on membrane lipid nomenclature 44 Why are there so many different types of membrane lipids? 44 What are fatty acid components of membrane lipids? 45 What is cholesterol doing in membranes? 45 The self-sealing character of lipid bilayers 46 Permeability characteristics of the lipid bilayer 46

Membrane proteins and membrane design 47 What holds integral proteins in the lipid bilayer? 47

Anchoring of peripheral membrane proteins to membranes 48 Glycoproteins or membrane proteins with sugars attached on the exterior surface 48

Functions of membranes 49

Transport of substances in and out of the cell 49 Passive transport or facilitated diffusion 49 Active transport 50 Mechanism of the Na+/K+ pump 50 Cotransport of molecules across membranes (symport) 51 Antiport transporters 52 Uniport transporters 52 Signal transduction 52

Role of the cell membrane in maintaining the shape of the cell and in cell mobility 52

Cell-cell interactions—tight junctions and gap junctions and cellular adhesive proteins 53

An overview of cellular membranes 54

Further reading 54

Problems 56

Part 3: Metabolism

Chapter 4: Digestion and absorption of food 61

Chemistry of foodstuffs 61

Digestion and absorption 61

Anatomy of the digestive tract 61

What are the energy considerations in digestion and absorption? 62

A major problem in digestion—why doesn't the body digest itself? 62 Zymogen or proenzyme production 62

Protection of intestinal epithelial cells by mucus 63

Digestion of proteins 63

HCl production in the stomach 63

Pepsin, the proteolytic enzyme of the stomach 63

Completion of protein digestion in the small intestine 64

Activation of the pancreatic proenzymes 64

Absorption of amino acids into the bloodstream 64

Digestion of carbohydrates 65

Digestion of starch 65 Digestion and absorption.

What happens to the fatty acids and monoacylgylcerol absorbed in the street absorbed in the street and absorbed in the street absorbe

Resynthesis of neutral fat in the absorptive cell 68

What are chylomicrons? 68

Digestion of other components of food 69

Further reading 69

Problems 69

Chapter 5: Preliminary outline of fuel distribution and utilization by the different tissues of the body 73

Purposes of metabolism 73

Storage of food in the body 73

How are the different foods stored in cells? 73

Glucose storage as glycogen 73

Storage of fat in the body 74

Are amino acids stored by the body? 74

Characteristics of different tissues in terms of energy metabolism 75

Overall control of the logistics of food distribution in the body by hormones 76

Post-absorptive phase 76 Fasting condition 76 Prolonged fasting or starvation 76 The situation in diabetes 77 The emergency situation—fight or flight 77

Problems 77

Chapter 6: Biochemical mechanisms involved in food transport, storage, and mobilization 79

Glucose traffic in the body 79

Mechanism of glycogen synthesis 79

How is energy injected into the process? 79

How does the liver release glucose? 82

Why does liver have glucokinase and the other tissues hexokinase?

What happens to other sugars absorbed from the intestine? 84

Amino acid traffic in the body (in terms of fuel logistics)

Fat and cholesterol traffic in the body 86

Uptake of fat from chylomicrons into cells 86

Logistics of fat and cholesterol movement in the body 87

An overview 87

Synthesis of cholesterol and its regulation 88

Utilization of cholesterol in the body 88

Lipoproteins involved in fat and cholesterol movement in the body

Apolipoproteins 88

Mechanism of TAG and cholesterol transport from the liver and the reverse cholesterol transport in the body 88

How is fat released from adipose cells? 91

How are free fatty acids carried in the blood? 91

Further reading 91

Problems 91

Chapter 7: Energy production from foodstuffsa preliminary overview 95

Energy production from glucose 95

The main phases of glucose oxidation 95

Biological oxidation and hydrogen transfer systems 95

NAD* -an important electron carrier 96

FAD-another important electron carrier 97

Stages in the production of energy from glucose-first glycolysis 97

Stage two of glucose oxidation—the citric acid cycle 98

How is pyruvate fed into the citric acid cycle? 99

What is coenzyme A? 99

Oxidative decarboxylation of pyruvate 99

Stage three of glucose oxidation-electron transport to oxygen 100 The electron transport chain—a hierarchy of electron carriers 100

Energy generation from oxidation of fat and amino acids 102

The interconvertibility of fuels 103

Problems 104

Chapter 8: Glycolysis, the citric acid cycle, and the electron transport system: reactions involved in these pathways 107

Stage 1—glycolysis 107

Glucose or glycogen? 107

Why use ATP here at the beginning of glycolysis? 107

Why is glucose-6-phosphate converted to fructose-6-phosphate? 107 Interconversion of dihydroxyacetone phosphate and glyceraldehyde-3-phosphate 110

Glyceraldehyde-3-phosphate dehydrogenase—a high-energy-

phosphoryl-compound-generating step 110

The final steps in glycolysis 111

The ATP balance sheet from glycolysis 112

Reoxidation of cytoplasmic NADH by electron shuttle systems 112 Transport of pyruvate into the mitochondria 113

Stage 2—the citric acid cycle 114

Conversion of pyruvate to acetyl-CoA—a preliminary step before the

Introduction—what is the real magic of the cycle? 115

A simplified version of the citric acid cycle 116

Mechanisms of the citric acid cycle reactions 116 The synthesis of citrate 116

Conversion of citrate to α-ketoglutarate 117 The C4 part of the cycle 118

Generation of GTP coupled to splitting of succinyl-CoA 118

Conversion of succinate to oxaloacetate 119

What determines the direction of the citric acid cycle? 119

Stoichiometry of the cycle 120

Topping up the citric acid cycle 120

Stage 3—the electron transport chain that conveys electrons from NADH and FADH, to oxygen 121

The electron transport chain 121

Where does it take place? 121

Nature of the electron carriers in the chain 121

Arrangement of the electron carriers 123

How is the free energy released by electron transport used to form ATP? 123

How are protons ejected? 124

How is ATP generated from proton flow? 126

Transport of ADP into mitochondria and ATP out 126

The balance sheet of ATP production by electron transport 127

Yield of ATP from the oxidation of a molecule of glucose to CO_2 and H₂O 127

Is ATP production the only use that is made of the potential energy in the proton-motive force? 128

Further reading 128

Problems 128

Chapter 9: Energy production from fat 131

Mechanism of acetyl-CoA formation from fatty acids 131

'Activation' of fatty acids by formation of fatty acyl-CoA derivatives 131

Transport of fatty acyl-CoA derivatives into mitochondria 132 Conversion of fatty acyl-CoA to acetyl-CoA molecules inside the

mitochondrion 132 Energy yield from fatty acid oxidation 133 - / nup or faul

Oxidation of unsaturated fat 133

Is the acetyl-CoA derived from fat breakdown always directly fed into the citric acid cycle? 134 How is acetoacetate made from acetyl-CoA? 134

Oxidation of odd-numbered carbon chain fatty acids 135 Peroxisomal oxidation of fatty acids 135

Further reading 136

Problems 136

Chapter 10: A switch from catabolic to anabolic metabolism—first the synthesis of fat and related compounds in the body 139

Mechanism of fat synthesis 139

General principles of the process 139

The acyl carrier protein (ACP) and the β -ketoacyl synthase 140 Mechanism of fatty acyl-CoA synthesis 140

Organisasion of the fatty acid synthesis prescens 140 The reductive steps in fatty acid synthesis (4) What is NA(301) 141 Where does fatty acid synthesis take place? 142

Synthesis of unsaturated fatty acids 143

Synthesis of triacylglycerol and membrane lipids from fatty acids 143

Synthesis of glycerophospholipids 144 Site of membrane lipid synthesis 145

Synthesis of prostaglandins and related compounds 146 The prostagiandins and thromboxanes 146 Leukotrienes 147 Synthesis of cholesterol and its regulation 147

Further reading 147

Problems 148

Chapter 11: Synthesis of glucose (gluconeogenesis) 151

Mechanism of glucose synthesis from pyruvate 151 What are the sources of pyruvate used by the liver for gluconeogenesis? 153 Synthesis of glucose from glycerol 154 Synthesis of glucose via the glyoxalate cycle 154

Further reading 155

Problems 156

Chapter 12: Strategies for metabolic control and their application to carbohydrate and fat metabolism 159

Why are controls necessary? 159 The potential danger of futile cycles in metabolism 160

How are enzyme activities controlled? 161

Metabolic control by varying the amounts of enzymes 161 Metabolic control by regulation of the activities of enzymes in the

Basic kinetics of enzyme action 161

Hyperbolic kinetics of a 'classical' enzyme 161 Which enzymes in metabolic pathways are regulated? 162 The nature of regulatory enzymes 162

Allosteric control of enzymes 163

The mechanism of allosteric control of enzymes 163 Reversibility of allosteric control 164 Allosteric control is a tremendously powerful metabolic concept 165

Control of enzyme activity by phosphorylation 165

Control of specific metabolic pathways 166

The two classes of controls—intrinsic and extrinsic for

extracellular) 166
The main intrinsic commiss on carbohydrate and fat metabolism 166 Intrinsic contrate on glycolysis and gluconeageness; its Intrinsic controls on prruvate dehydrogenase, the citric acid 'nic acid 'nic

Intrinsic controls on latty acid oxidation and synthesis its Intrinsic controls on party

Control of carbohydrate and fat metabolism by extracellular agency

the body 1509 What regulates the levels of insulin, glucagon, and epinephrine in a

How do the hormones, glucagon, epinephrine, and insulin, works

What is the second messenger for glucagon, epinephrine, and

Control of the number of receptors 171

How does insulin control metabolism? 171

Control of glucose and fat uptake into cells 171

Control of glycogen breakdown and synthesis by extracellular

Control of glycogen breakdown 172

Mechanism of cAMP control of glycogen breakdown and

Reversal of phosphorylase activation 174

How is glycogen synthase controlled? 175

Control of glycolysis and gluconeogenesis by extracellular agents 175

Control of fat metabolism by extracellular agents 177

Further reading 178

Problems 179

Chapter 13: Why should there be an alternative pathway of glucose oxidation—the pentose phosphate pathway? 181

The oxidative steps 181 The nonoxidative section and its purpose 182 Where does the complete oxidation of glucose come into all of

Why do red blood cells have the pentose phosphate pathway? 184

Further reading 184

Problems 185

Chapter 14: Raising electrons of water back up the energy scale—photosynthesis 187

Overview 187 Site of photosynthesis-the chloroplast 188 An overview of the photosynthetic apparatus and its organization in the thylakoid membrane 188 What is chlorophyll? 189 Mechanism of light-dependent reduction of NADP* 190 The water-splitting centre of PSI 191 How is ATP generated? 191 How is CO2 converted to carbohydrate? 192

Where does the 3-phosphoglycerate come from? 192

Where does the ribulous 1:3 buspharphate come from? 193 Has evolution slipped up a bit! 193 The C., pathway 194

Further reading 195

Problems 195

Chapter 15: Amino acid metabolism 197

Nitrogen balance of the body 198

General metabolism of amino acids 198

Aspects of amino acid metabolism 198 Deamination of amino acids 199 Mechanism of transamination reactions 200 Special deamination mechanisms 200

Fate of the keto acid or carbon skeletons of deaminated amino acids 200

Phenylalanine metabolism has special interest 201 Methionine and transfer of methyl groups 202 Where are the methyl groups transferred to? 202

Synthesis of amino acids 202

Synthesis of glutamic acid 203 Synthesis of aspartic acid and alanine 204 Synthesis of serine 204 Synthesis of glycine 204

Synthesis of other molecules from amino acids 204

What happens to the amino groups when they are removed from amino acids?—the urea cycle 204

Mechanism of arginine synthesis 205 Conversion of citrulline to arginine 205 How is the amino nitrogen transported from extrahepatic tissues to the liver to be converted into urea? 206 Transport of ammonia in the blood as glutamine 206 Transport of amino nitrogen in the blood as alanine 206

Further reading 207

Problems 207

Chapter 16: Garbage disposal units inside cells 209

Lysosomes 209

How does material to be destroyed come into contact with the lysosomal enzymes? 209

The essential nature of lysosomal function 210

Peroxisomes 211

Further reading 211

Problems 211

Chapter 17: Enzymic protective mechanisms in the body 213

Blood clotting 213

Keeping clotting in check 214. Rat poison, blood clotting, and vitamin \$, 215

Protection against ingested foreign chemicals 216

Secondary modification—addition of a polar group to products of the P450 attack 217

The response of the liver to the ingestion of foreign chemicals 20 Multidrug resistance 217

Protection of the body against its own proteases 217

Protection against reactive oxygen species 217

Mopping up oxygen free radicals with vitamins C and E 218 Enzymic destruction of superoxide by superoxide dismutase 218 The glutathione peroxidase-glutathione reductase strategy 219

Further reading 219

Problems 220

Chapter 18: Nucleotide metabolism 223

Structure and nomenclature of nucleotides 223

The sugar component of nucleotides 223 The base component of nucleotides 224 Nomenclature 224 Structure of the bases 224 Attachment of the bases in nucleotides 224

Synthesis of purine and pyrimidine nucleotides 225

Purine nucleotides 225

PRPP-the ribotidation agent 225

The one-carbon transfer reaction in purine nucleotide synthesis 226 Where does the formyl group in formyl FH4 come from? 228 How are ATP and GTP produced from AMP and GMP? 229

The purine salvage pathway 229

What is the physiological role of the purine salvage pathway? 229

Formation of uric acid from purines 230

Control of purine nucleotide synthesis 230

Synthesis of pyrimidine nucleotides 231

How are deoxyribonucleotides formed? 231

Conversion of dUMP to dTMP 232

Tetrahydrofolate, vitamin B₁₂, and pernicious anemia 233

Further reading 234

Problems 234

Part 4: Information storage and

Chapter 19: DNA—its structure and arrangement in cells 239

What are nucleic acids? 239

The primary structure of DNA 239 What are the bases in DNA? 239 Attachment of the bases to deoxyribose 240 What are the physical properties of the polynucleotide components? 240 Structure of the polynucleotide of DNA 240 Why deoxyribose? Why not ribose? 241 The DNA double helix 242 DNA chains are antiparallel; what does this mean? 244 How large are DNA molecules? 246

How is the DNA packed into a nucleus? 246

How does the described structure of DNA correlate with the compact eukaryote chromosomes visible in the light microscope? 247 What is a gene in molecular terms? 248 Some variations on the 'standard' gene 248

Repetitive DNA 249 Where are we now? 249

Further reading 249

Problems 249

Chapter 20: DNA synthesis and repair 251

Overall principle of DNA replication 251

Control of initiation of DNA replication in E. coli 252

Initiation of DNA replication in eukaryotes 252

Unwinding the DNA double helix and supercoiling 253

How are positive supercoils removed ahead of the replicative fork? 253 What are the biological implications of topoisomerases? 255 What is SSB? 256

The basic enzymic reaction catalysed by DNA polymerases 256

Problems and more problems in DNA synthesis 257

How does a new strand get started? 257

The polarity problem in DNA replication 257

Enzyme complex at the replicative fork in E. coli 258

What happens to the Okazaki fragments? 259

Proofreading by polymerase III 261

Methyl-directed mismatch repair 261

epair of DNA damage in E. coli 263

The machinery in the eukaryote replicative fork How is telomeric DNA synthesized? 265

DNA damage repair in eukaryotes 266

Transposons or jumping genes 266

Is the mechanism described above the only way in which

Further reading 267

Problems 268

Chapter 22 Cases transcription—the first step in the mechanism is which genes direct protein synthesis η_1 Gene trans

Genes this

Further 1

Problem

degra

The e

Ho

TE

H

Init

0

The structure of RNA 271 How is mRNA synthesized? 272 Some general properties of mRNA 272 Some essential terminology 273 A note on where we go from here 273

Gene transcription in E. coli 274

What is specified by the term 'gene' in prokaryotes? 274 What do we mean by the 5' end of a gene? 274 Phases of gene transcription 274 Initiation of transcription in E. coli 274 Untwisting the DNA 275 Termination of transcription 275

The rate of gene transcription initiation in prokaryotes 276 Control of transcription by different sigma factors 276 How are individual E. coli genes regulated in a variable fashion? The lac operon 276

Structure of the E. coli lac operon 276

Gene transcription and its control in eukaryotes 279

The basic processes involved in eukaryotic mRNA production 279 Termination of transcription in eukaryotes 279 Capping the RNA transcribed by RNA polymerase II 279

What are split genes? 280 Mechanism of splicing 280 What is the biological status of introns? 281 What is the origin of split genes? 281 Alternative splicing or two (or more) proteins for the price of one

gene 281

Mechanism of eukaryote gene transcription and its control 282

Unpacking of the DNA for transcription 282 The gene control needs in differentiated eukaryotes 282

The structure of the type II eukaryotic genes 283 The mechanism of eukaryotic gene transcriptional initiation [8]

The basal initiation complex 283

What are the roles of transcriptional factors? 284

The structure of DNA binding proteins 284

Helix turn helix proteins 285 Leucine zipper proteins 286 Zinc finger proteins 286 Homeodomain proteins and development 286 mRNA stability and the control of gene expression 287 Determinants of mRNA stability and their role in gene expression control 287

Gene transcription in mitochondria 289

Genes that do not code for proteins 290

Further reading 290

Problems 291

Chapter 22: Protein synthesis, intracellular transport, and degradation 293

The essential basis of the process of protein synthesis 293 How are the codons translated? 294 Transfer RNA or tRNA 294 The wobble mechanism 295 How are amino acids attached to tRNA molecules? 296 Ribosomes 298

Initiation of translation 298 Initiation of translation in E. coli 299

Once initiation is achieved, elongation is the next step 300 Cytoplasmic elongation factors 300 Mechanism of elongation 301

Termination of protein synthesis 303

What is a polysome? 303

How does protein synthesis differ in eukaryotes? 303

What is the situation in mitochondria? 304

Effects of antibiotics and toxins on protein synthesis 304

How does the polypeptide chain synthesized on the ribosome fold up? 304

Enzymes involved in protein folding 305 Molecular chaperones and folding 305 Prion diseases and protein folding 305 Other roles for molecular chaperones 306

How are newly synthesized proteins delivered to their correct destinations? 306

What is the endoplasmic reticulum or ER? 306 How are proteins secreted through the ER membrane? 306 Glycosylation of proteins in the ER lumen 307 What happens to the polypeptide translocated into the rough ER lumen? 307

What are the 'destination signals' on proteins involved in Golgi complex sorting? 308 Packaging of lysosomal proteins 308 How are integral membrane proteins targeted to their sites? 309 Is all protein translocation cotranslational? 309

Degradation of proteins 310

Further reading 311

Problems 313

Chapter 23: Viruses and virolds 315

The life cycle of a virus 315 Types of genetic material in different viruses 316 How are viruses released from cells? 317

Replication mechanisms of some selected viruses 318

Vaccinia 318 Poliovirus 318 Influenza virus 318 Retroviruses 319 Cancer-inducing, or oncogenic, retroviruses 320 Bacteriophage lambda 321

What are viroids? 322

Further reading 322

Problems 322

Chapter 24: Gene cloning, recombinant DNA technology, genetic engineering 325

What were the problems in isolating genes? 325

The first step—cutting the DNA with restriction endonucleases 325

What is the biological function of restriction enzymes? 326

Gene cloning, or how genes are isolated 326 What does 'cloning' mean? 326

Isolation of a genomic clone of a human gene 327 Preparation of a human gene library 327 How are recombinant molecules constructed? 327 Screening of the plaques for the desired human gene 328

Cloning a human cDNA 329 Preparation of a human cDNA library 329

What can be done with the cloned DNA? 329

Bacterial plasmids 329

Determination of the base sequence of a cloned piece of DNA 330 Outline of the dideoxy DNA-sequencing technique 330 How is all this interpreted as a base sequence? 331

or chain reaction (N.R.) for implifying a specific DNA aggerer (E) ondensor 195A technology 333 Supramore of the gene to hursered and enhancer here; 333 Six-almental residences 533 Conspicación XXX Demonstrate of general admissionalities by restriction analysis or Southern Silvering 334

Surther reading 334

Problems 3.15

Chapter 25: The immune system 337

There are two protective mechanisms in the immune system 337 Where is the immune system located in the body? 338 An overview of the strategy involved in immune protection 338

The mechanisms of immunity—B cells, helper T cells, and the production of antibodies 339

Structure of antibodies 339

What are the functions of antibodies? 340

What are the different classes of antibodies? 341

How is antibody diversity achieved? 341

What is the role of the helper T cells in activating B cells to secrete antibody? 342

Memory cells 344

T cells and cell-mediated immunity 344

The role of cytokines in the immune system 344

Why does the human immune system so fiercely reject foreign human cells 345

Further reading 345

Problems 346

Chapter 26: Chemical signalling in the body 349

What sorts of cellular activities are controlled by extrinsic signals? 349

What are the signalling molecules? 350

Endocrine hormones 350 Growth factors 350 Neurotransmitters 352

How is the release of signalling molecules controlled? 352

Control of hormone release 352 Control of release of growth factors 353 Control of neurotransmitter release 353 Removal of signalling molecules 353

How are signals detected by target cells? 353

How does ligand binding result in cellular responses and responses and light receptor-mediated responses and

Overview of membrane receptor-mediated responses 365

Description of individual signalling pathways inside the contour activation to cellular response 356 linking receptor activation to cellular response 356

Control of cAMP levels in cells 386

How does cAMP exert effects on gene transcription? 358

Signal transduction using cyclic GMP as second messenger 359 Hormones that work via different second messengers; the

What are the other second messenger roles of calcium? 360 Tyrosine kinase-associated receptors 361

Tyrosine kinase-associated widespread signalling pathway from membrase

The Ras pathway and oncogenes 363

A note on terminology 364

Why is the Ras pathway so long? 364

A direct intracellular signalling pathway from receptor to nucleus 364 How general is this direct pathway? 365

Extrinsic signals that control ligand-gated ion channels 365 How does acetylcholine binding to a membrane receptor result in a

Vision: a process dependent on ligand-gated pore control 366 Transduction of the light signal 367

Further reading 368

Problems 369

Part 5: Transport of oxygen and CO2

Chapter 27: The red blood cell and the role of hemoglobin 373

The red blood cell 373

Heme and its synthesis 374

Synthesis of heme 374

Regulation of heme biosynthesis and iron supply to the erythrocyte 375

Destruction of heme 376

How is globin synthesis regulated? 377

Transport of gases in the blood 377

What is the chemical rationale for a heme-protein complex as the oxygen carrier? 377 Structure of myoglobin and its oxygen binding role 377

Structure of hemoglobin 379

Binding of oxygen to hemoglobin 379

How is the sigmoidal oxygen saturation curve achieved? 380

Mechanism of the allosteric change in hemoglobin 380.

The essential role of 2:3-bisphosphoglycerate (BPG) in hemoglobin function 381.

Effect of pH on oxygen binding to hemoglobin 382 Role of pH changes in oxygen and CO₂ transport 382 pH buffering in the blood 383

Sickle cell anemia 383

Further reading 383

Problems 384

Part 6: Mechanical work by cells

Chapter 28: Muscle contraction 389

A reminder of conformational changes in proteins 389

Types of muscle cells and their energy supply 389

Structure of skeletal striated muscle 390

Structure of the myofibril 390

How does the sarcomere shorten? 390

Structure and action of thick and thin filaments 391

How does the myosin head convert the energy of ATP hydrolysis into mechanical force on the actin filament? 391

How is contraction in voluntary striated muscle controlled? 392

How does Ca²⁺ trigger contraction? 392 Release and uptake of Ca²⁺ in the muscle 393

How does smooth muscle differ in structure and control from striated muscle? 394

Control of smooth muscle contractions 394

How does Ca²⁺ control smooth muscle contraction? 394

Further reading 395

Problems 395

Chapter 29: The role of the cytoskeleton in the shape determination of cells and in mechanical work in cells 397

The role of actin and myosin in nonmuscle cells 398
Structural roles of actin and its involvement in cell movement 398
The role of actin and myosin in intracellular transport of materials 399

Microtubules, cell movement, and intracellular transport 399

What are microtubules? 399

What protects the positive (+) ends of microtubules? 400

Functions of microtubules 400

Molecular motors involved in microtubule-associated movement 400

The role of microtubules in cell movement 401

The role of microtubules in vesicle transport inside the cell 401

The role of microtubules in mitosis 401

The mechanism of chromosome migration (anaphase A) 402

The mechanism of pole separation (anaphase B) 402

Intermediate filaments 403

Further reading 403

Problems 403

Answers to problems 405

Figure acknowledgements 423

Index 425