B10

BIOLOGICAL SCIENCE

scribed for Higher Secondary Classes by the Boards of Intermediate and on Lahore, Multan, Sargodha, Bahawalpur and Rawalpindi 33—SE/G dated 21-1-72

BIOLOGICAL SCIENCE AN ENQUIRY INTO LIFE

Biological Science Curriculum Study

PUBLISHERS

Sh. Ghulam Ali & Sons, Lahore

FOR

PUNJAB TEXT-BOOK BOARD, LAHORE

Edition 1st

Imp. 1st

Printed on

July, 1980

Number of Copies

6,000

Contents

Foreword

Preface

vii

ART 1 UNITY

earth is populated by millions of different types of living creatures. Each has its own way of but all share the only known kind of structural and chemical organization that means being whatever their dissimilarities, plants, animals, and other creatures solve their big problems—
of being alive—in much the same way. The study of these unifying features will be one theme
art 1. We will also learn how biologists acquire knowledge of living creatures.

PTER Biology - What Is It About?

1

Biology is the sum of man's knowledge about life—his own life and that of all other creatures. This knowledge consists not only of a collection of facts, but more importantly, of the way these facts are associated and interpreted in general theories. An example of a biological investigation is the theme of this chapter. The cause of mankind's most serious disease, malaria, is used as a case history in showing how man attempts to answer his biological questions.

TER Life from Life

19

Less than a century ago scientists debated furiously the question of whether life could arise spontaneously from nonliving substances. The far-reaching implications of this biological question are not necessarily the same for life today and life in its most distant past. But they are the same for all kinds of living things, as investigation of this biological problem in terms of life today has abundantly illustrated.

TER Basic Structure

38

Unifying theories relate isolated facts. Science is at its best when it seeks a new theory to organize an accumulation of poorly understood facts. One of the greatest unifying theories of biology is that all, or nearly all, forms of life have a common basic structure. That this is true is not at all obvious: a fish and a tree really do not seem to resemble one another. Yet both are alike in being composed of cells. Cells were first discovered almost 200 years before their nature was understood well enough to lead to the cell theory.

CHAPTER

Basic Functions

4

If nearly all forms of life have a common basic structure—cells—do they also mon functions? Does life as a fish have anything in common with life as the biological question is closely connected with the history of chemistry—establishment that life can be understood in terms of the same general laws the versity among all matter.

CHAPTER

Living Chemistry

5

Even though all forms of life—all living organisms—exist in full conformity wanisms—the the patterns that we recognize as the laws of chemistry and physics, the patterns e book will be a volve complex chemistry and complex physics. Living organisms are composed that are common in the nonliving world, but these atoms are much more composed ganized than in nonliving matter. Only in living structures are atoms found organisms—T 2a large molecules of nucleic acids, proteins, carbohydrates, and fats. The cells of creatures are composed chiefly of these same classes of chemical substances.

IAPTER

ttern. Unity con

rts of an interre

CHAPTER

The Physiology of Cells

6

A living cell, with its huge number of complex substances, exhibits ceaseless chactivity. Substances are entering and leaving the cell at all times, as molecules are built up and broken down within the cell. Transfers of energy for all the cell's activity occurring constantly. These ceaseless processes of chemical and energy change

CHAPTER

Reproduction - of Cells - of Individuals

7

The most basic characteristic of life is reproduction; that is, the production of ne tures and individuals similar to the existing structures and individuals. Reproduce at different levels of organization. Parts of the cell, such as the chrom HAPTER produce new chromosomes. Cells then produce new cells; and individuals, offsp themselves. In this chapter, reproduction by cells and by individuals is discussed of a fundamental feature—the replication and distribution of chromosomes in mile meiosis.

CHAPTER

The Hereditary Materials

HAPTER

8

The physical basis of genetic continuity can be traced from cell to nucleus to chrom In this chapter you will list the requirements for a hereditary material, then begin to the belief that DNA is the hereditary material are used as an inquiry into so specific proteins of the cell is described.

RT 2 DIVERSITY

the fundamental unity in life. Historically, diversity emerged as modifications upon a common m. Unity continues to be shown in the recognition that different organisms are similar chemically, have a common structural basis in cells, reproduce, evolve, respond to stimuli, and constitute of an interrelated whole. Yet diversity in life is seen in the millions of different types of living misms—the three principal groups being microorganisms, plants, and animals. This section of pook will be concerned with the many variations upon the fundamental theme.

RT 2a MICROORGANISMS

PTER Beginnings - Viruses - Time

177

Several billion years ago the earth was vastly different from what it is today. The primeval seas may have become rich mixtures of organic molecules. Probably a chance combination of molecules produced a larger molecule (possibly similar to the DNA of today) that had a chemical structure giving it a pattern for exact duplication. Slowly, the duplicating molecules became parts of more complex systems, until they could be called "organisms." From these humble beginnings life spread over the earth and evolved into its innumerable species—each an experiment in living in a particular way. The viruses of today may represent a level of complexity similar to that of some of the earliest forms of life. They cannot live independently but require a living cell for their life and reproduction. This may be analogous to the requirements of the hypothetical first organisms for an environment rich in organic compounds.

PTER Bacteria – Pioneers of Cellular Organization

198

The bacteria, more complex than the viruses, are the simplest organisms that can be called cells. They also are the smallest organisms that can be studied with the compound microscope. Their activities are basically those of *every* living organism. Life in the simplest cells can be very complex—even to reproduction by sexual means.

PTER Small Organisms of Great Importance

0

214

Because of their small size, bacteria were discovered only after the invention of the microscope. Their importance became rapidly recognized, for they are organisms that cause spoilage, decay, and disease, but that have many useful activities. The discovery that bacteria cause disease is one of the most interesting examples of the methods of science. Bacteria are beneficial in industry, food preparation, and vitamin production, mostly because of their ability to carry on fermentations that result in valuable byproducts.

PART 2b PLANTS

CHAPTER

Wolds, Yeasts, and Mushrooms

12

Culterively known as fung, the moulds, senses, and mushrooms are more Collectively known as summer the many in the evolution of organisms the bacteria. They represent distinctive lines in the evolution of organisms the an photosymbesis. They, like the animals, are dependent ultimaticly upon the Together with the bacteria they are the chief decomposes - they break the Together with the manufacture and release substances that are used by the inof dear animals and particles, fings may to great thanage to timber, stated finally decomposition activities, fings may to great thanage to timber, stated finally products in another role, is producers of plant discuses, they have affected to tion of the world's population. AT

CHAPTER

The Trend Toward Complexity

The most successful line of plant evolution gave rise to the green plants of a plant of a simplest are the green algae. From their origin in the sea, green algae provided be a of the green land plants. Although this happened long ago, the evolutionary sea. 13 plainly seen by the study of present-day aligne.

CHAPTER

The Land Turns Green

More than 400 million years ago, some species of green signe evolved into to could live on land. Until then, the land had been butten and lifeless. Sinuly the or a mantle of green—the life-supporting green of photosynthetic organisms. Speci tures and processes, primarily for obtaining water, carbon dioxide, and nitrospress pounds-and for preventing subsequent loss of water-became necessary for a on land. The liverwords and mosses of today are reminders of some of the curi Q ments in the evolution of green land plants.

CHAPTER

Photosynthesis - The Link Between Two Worlds

15

Life is the child of light. Green plants capture the energy of sunlight and use I thesize energy-rich compounds. These compounds are the sole source of energy it all other organisms. The essential substance in green plants that makes photos PTER possible is chlorophyll, which in most land plants is concentrated in leaves. In # leaves, H₀O and CO₅ are used in the manufacture of sugars and amino acids.

CHAPTER

Stems and Roots-A Study of Complementarity of Structure and Function

Stems and roots support the leaves in elevated positions in which maximum light received. The water used in photosynthesis is absorbed by mosts and transported 1 through the tissues of the roots and the stem. The rapid movement of materials and the support of leaves are aided by the complex conducting systems that have evolved in the vascular plants.

TER Reproduction and Development in Flowering Plants

309

The pinnacle of evolutionary development of the green plants is the large group characterized by flowers. Most of the familiar plants of the world are flower-producing species. It is this group that provides, directly or indirectly, for nearly all of man's needs—his food, his shelter, and most of his clothes and fuels.

RT 2C ANIMALS

8

9

PTER

20

PTER The World of Animals

329

Green plants are producers; animals are consumers. Given a proper temperature and the necessary inorganic substances, green plants can live wherever there is light. Animals can live only where there are green plants or products derived from green plants. This basic dependence defines the boundaries of the world of animals. The animal way of life—whether of a single-celled organism such as Amoeba or of large and complex animals—makes a series of demands on the world of life. These demands can be understood from the study of one kind of animal and its dependence upon other organisms and upon the nonliving environment.

PTER The Diversity Among Animals – Variations on a Theme

348

There are probably two million species of animals living today. Fundamentally, all live the same way, but in detail they vary tremendously. The many animal species can be classified into major groups known as phyla. Ten of these phyla include at least 98 percent of all known animals. The known history of animals begins more than a half billion years ago, when all their ancestors lived in water. Much later, some of the animals evolved modifications permitting them to colonize the land.

Digestion in Multicellular Animals

388

In animals that have many cells, some degree of specialization, or division of labor, occurs among the cells. Some of the cells may be specialized in capturing food, others in digesting it, still others in coordinating these activities and additional ones. Digestion is carried out in a simple sac (in *Hydra*) or a complex sac (in planarians), a simple tube (in some worms) or a complex tube (in grasshoppers and many other animals, including man). This chapter is a study of one essential aspect of this division of labor—the enzyme-controlled breakdown of food substances.

CHAPTER

Transportation Within Multicellular Animals Transportation within a mechanism for transporting materials throughout Multicellular animals require a mechanism for transporting materials throughout Multicellular animals require a mechanism for transporting materials throughout Multicellular animals require a mechanism for transporting materials throughout Multicellular animals require a mechanism for transporting materials throughout Multicellular animals require a mechanism for transporting materials throughout Multicellular animals require a mechanism for transporting materials throughout Multicellular animals require a mechanism for transporting materials throughout Multicellular animals require a mechanism for transporting materials throughout Multicellular animals require a mechanism for transporting materials throughout Multicellular animals require a mechanism for transporting materials throughout Multicellular animals require a mechanism for transporting materials throughout Multicellular animals require a mechanism for transporting materials throughout Multicellular animals require a mechanism for transporting materials throughout Multicellular animals require a mechanism for transporting materials throughout Multicellular animals require a mechanism for transporting materials and the mechanism fo Multicellular animals require a mechanism to Hydra, but diffusion can supply the Sometimes simple diffusion will suffice, as in Hydra, but diffusion can supply the Sometimes simple diffusion will suffice. Animals of larger size and complexity have Sometimes simple diffusion will suffice, as in a supply the Sometimes simple diffusion will suffice, as in a supply the sometimes simple diffusion will suffice, as in a supply the sometimes simple diffusion will suffice, as in a supply the sometimes are constructed and how they function is the sometimes are constructed and how they are constructed ments of only very small bodies. Animals of the subject systems. How these systems are constructed and how they function is the subject 21 chapter.

CHAPTER

Respiration in Multicellular Animals

22

In animal cells, carbon dioxide is a major product of energy-liberating reactions. In animal cells, carbon dioxide is a major product the exchange of oxygen is often required in these reactions. Respiration involves the exchange of oxygen is often required in these reactions. The carbon dioxide by the animal with its environment, as well as energy-liberating rewithin the cells.

CHAPTER

Excretion and Homeostasis in Multicellular Animals

23

Excretion is the removal from the body of chemical substances present in excess. In tion to water and carbon dioxide, major waste products in animals include one or nitrogen compounds such as urea. Respiratory processes eliminate carbon dioxide. nitrogen-containing wastes in larger animals usually are removed by specialized exp organs such as kidneys. Heat released in metabolism also poses a problem, and homeostatic mechanisms may regulate body temperature, apart from the mechanism regulate body chemical makeup

CHAPTER

Coordination in Multicellular Animals

24

Multicellular animals, with their many types of specialized cells, have special me coordinating the activities of all the parts. Coordination is brought about in two ways: control by nerves and control by chemical substances known as hormones. mation and "orders" are carried from one part of the body to another by both the

CHAPTER

Animal Support and Locomotion

25

One of the most obvious characteristics of the animal way of life is movement. celled animals may move by cilia, flagella, or by a flowing motion of the cell itself complex animals move by means of tentacles, wings, feet, fins, and sometimes cilia. In many instances the movement is dependent upon the contraction of muscles contraction made possible by special chemical reactions and the energy of ATP. the more complex animals, body movement usually involves supporting structure the body—a skeleton on the inside, as in man, or on the outside, as in the insects.

472

Reproduction in Animals

ER

FER

TER

Reproduction is a prime attribute of life. It may be asexual, as when a single-celled animal divides into two, or it may be sexual, involving the production and union of an egg and a sperm. Sexual reproduction—so widespread in the living world that we must assume it to be the most successful type so far evolved—provides for great variety in the hereditary makeup of organisms. The reproduction of most animals, including man, is sexual.

The Development of Animals

493

In sexual reproduction, the union of a sperm and an egg produces a fertilized egg. The fertilized egg is only a single cell and, hence, is vastly different from the multicellular adult. The events that occur during the gradual growth and change from fertilized egg to adult are known as development. Basically, development consists of an increase in the number of cells, the differentiation of cells into different types, growth, and the organization of cells into the structures of the adult.

The Analysis of Development

505

For centuries man has speculated on the underlying factors that control development. How can the fertilized egg, itself a single cell, develop into a complex adult with its many forms of cells, tissues, and organs? One hypothesis was that the adult body was preformed in miniature in the sperm or in the egg. When microscopes were available, it was possible to make the observation that disproved this hypothesis. Biologists of today believe that the complexity of the adult is a slow development from the simplicity of the embryo, and they are performing experiments to learn how this comes about.

T 3 CONTINUITY

s organisms of today are the passing manifestations of a lineage of life that extends backin time for several billion years. Individuals die, but life continues in their offspring. Two ts of the continuity of life by reproduction must be considered. First is the short-term conbased on transmission of hereditary instructions from one generation to the next. Second long-term continuity—evolution—based on mutation, recombination of alleles, and changes quency of alleles because of natural selection.

TER Patterns of Heredity

521

A fertilized egg is always of insignificant dimensions when compared with the adult it will form. Yet this single cell contains all the information necessary for its development into

a full-grown organism. Heredity is the process by which this information is a full-grown organism. Heredity is the process by which this information is a full-grown organism. Heredity is the process by which this information is a full-grown organism. a full-grown organism. Heredity is the productable ways, as set forth from one generation to another, in exact and predictable ways, as set forth from one generation Mendel, and by others in the century since Mendel. from one generation to another, in exact in the century since Mendel's APTER discovered by Gregor Mendel, and by others in the century since Mendel's APTER

34

The Cultural Evol

In the last 25,000 ye way of life. He has ways, a biological p and cities and deve mind and hands ha sary to provide the

The Chromosome Theory of Heredity

CHAPTER

The exact and predictable nature of inheritance suggests that it has a physical by The exact and predictable that the twentieth century, biologists discovered to cell. During the first quarter of the twentieth century, biologists discovered to basis: the information of inheritance is carried by genes, which are parts of chromosomes, during the formation basis: the information of chromosomes during the formation of sperms, and the particular combinations of chromosomes that occur at fertilizations of chromosomes are chromosomes of chromosomes at the chromosomes of chromosomes sperms, and the particular combination of this pattern, there is even a basis for the RT 4 INTERACT tion of genes located on the same chromosome. Specificity of hereditary in appears to be due to a specific sequence of nucleotides in the DNA of the chromali levels of biological organization

v to the last of these. No inc uence of interactions with ot cies, and with the entirety of

CHAPTER

Darwinian Evolution

More than a century ago, Charles Darwin announced his hypothesis of evolution of the most profound intellectual insights of all time. He offered a rational explanation the innumerable different species that live on the earth, and for the changes that APTER them with the passage of time. The fossil evidence of life long ago, and the evidence rived from the study of life today, have substantiated the correctness of Darwin's esis, which has become a major part of the theory of evolution.

Animal Beha

Organisms are presence of of dependence a entire pattern

CHAPTER

The Mechanisms of Evolution

In Darwin's time the available biological data were not sufficient to prove the comAPTER of the hypothesis of evolution. More than half a century later, the careful stu heritance did provide the necessary theoretical basis. We now understand the hereditary differences among organisms. From among genetically different in those whose inherited characteristics best fit them to their environment are sel nature; that is, the "better" gene combinations survive in the succeeding gen whereas the "inferior" gene combinations do not. Isolation - in terms of geogra riers to mixing, and gradually emerging genetic barriers to interbreeding - helps the separation of closely related populations into new species. PENDIX Checks an

All organism influence of genetically primary pro in dead org other deco pends on t

CHAPTER

The Evolution of Man

IAPTER

The biological processes that affect all other life affect mankind as well. Manevolved-and has done so at a spectacular rate unequalled elsewhere in the work Within the last two million years he has reached the stage at which he could "man" in the full sense of the term. Since then he has passed through a long culture hood, as he slowly learned to use tools and fire and to communicate with his fell A World

Plants, ar make up in the sh lands, tu a differen 14

In the last 25,000 years man has changed little in his structure, but tremendously in his way of life. He has domesticated plants and animals and has solved, in increasingly better ways, a biological problem that he cannot escape—the need for food. He has built towns and cities and developed the science and technology that is the basis of civilization. His mind and hands have produced science, art, and literature. He has the information necessary to provide the individuals of his species with a secure and rewarding life.

RT 4 INTERACTION

I levels of biological organization there is unity, diversity, continuity, and interaction. We turn to the last of these. No individual is complete in itself. Its behavior, and life itself, is a conence of interactions with other individuals of the same species, with the individuals of different les, and with the entirety of the living and nonliving environments.

PTER

Animal Behavior

645

5

Organisms are constantly active, responding to processes within themselves, to the presence of other organisms, and to the nonliving environment. Such activities and interdependence among organisms are particularly obvious in animals. Biologists analyze the entire pattern of animal activities in the study of animal behavior.

PTER

Checks and Balances in Nature

677

6

All organisms are the products of their genetic makeup and their environments. Under the influence of the environment, evolution occurs, for the environment selects organisms genetically best suited to survive in certain habitats. In each habitat, green plants are the primary producers, and other forms of life are the consumers. The stockpile of materials in dead organisms is decomposed and returned to living circulation by bacteria, fungi, and other decomposers. All organisms on earth are part of a great cycle that ultimately depends on the energy of sunlight.

ENDIX

PTER A World of Ecosystems

708

37

Plants, animals, and microorganisms, together with the environments in which they live, make up interdependent units or ecosystems. An ecosystem may be in the open ocean or in the shallow sea along the shore. On land it may be in a forest, or on mountains, grasslands, tundra, or desert. Each of these, because of physical and biological factors, supports a different set of living things.

xvii

CHAPTER

Mankind: a Population out of Balance

38

Among the biological problems that man cannot escape is his own effect on Primitive man generally lived in balance with nature. He was an integral biological community. Civilized man, especially in recent centuries, has approximate that could be his own undoing. He has destroyed vast are soil by poor agricultural practices; he has devastated forests, only to find his diminishing and his soil supply eroding; he has fouled rivers and streams, their water unsuitable to his needs. But today he is beginning to behave a living creature who depends on other life for his existence.

CHAPTER

A Perspective of Time and Life - Molecules to Man

39

Man and all other living species are products of the past, associating in the product of the past, as a product of

Acknowledgments to Scientific Societies and Individual Review

Index

